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SUMMARY 

High-order compact finite difference schemes for two-dimensional convection-diffusion-type differential 
equations with constant and variable convection coefficients are derived. The governing equations are 
employed to represent leading truncation terms, including cross-derivatives, making the overall O(h4) 
schemes conform to a 3 x 3 stencil. We show that the two-dimensional constant coefficient scheme collapses 
to the optimal scheme for the one-dimensional case wherein the finite difference equation yields nodally 
exact results. The two-dimensional schemes are tested against standard model problems, including a 
Navier-Stokes application. Results show that the two schemes are generally more accurate, on comparable 
grids, than O(h2)  centred differencing and commonly used O(h)  and O(h3)  upwinding schemes. 
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INTRODUCTION 

Many physical systems, especially those involving fluid flow, are described in terms of mathemat- 
ical models that include convective and diffusive transport of some variable. It is well known that 
numerical solutions of such model equations can yield spatially oscillatory results. An array of 
numerical tools, notably various upwinding schemes, has been generated over the years to 
eliminate such spurious oscillations, albeit often at the expense of accuracy. 

Numerical schemes for approximating convectiondiffusion equations usually employ centred 
differencing for the second-order derivative diffusion terms and some form of backward (upwind) 
differencing for the convection terms. The standard first-order upwind difference scheme (UDS) 
and the popular third-order upwind scheme of Leonard’ (herein referred to as LDS) are among 
them. These and other schemes are categorized and discussed in the reviews by Pate1 et al.’ and 
Leschziner. 

An alternative approach to backward differencing is to add, directly, an artificial diffusion 
(dissipation) term to the physical diffusion and use the standard five-point centred difference 
scheme (CDS). The disadvantage of this technique, as with the UDS scheme, is that it smooths the 
solution in all directions. (It is well known that this approach is equivalent to the UDS for an 
appropriate choice of artificial diffusivity.) 

It has in fact been demonstrated for a simple one-dimensional convectiondiffusion problem 
that if the proper (optimal) amount of artificial diffusion is added, the numerical solution to the 
discrete equation will be nodally exact. This fact has motivated ad hoc generalizations of the 
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optimal one-dimensional formulation to multidimensions. Generally, these formulations are not 
optimal and tend to work well only for problems in which the flow is aligned with the grid. In 
problems that do not conform to this condition, numerical solutions will exhibit excessive 
diffusion normal to the flow direction (crosswind diffusion). An improvement to the above ad hoc 
schemes is the restriction of artificial diffusion to the streamwise direction (streamline upwinding). 
This approach requires a tensorial artificial diffusivity rather than a scalar one. The concept of a 
tensorial artificial diffusivity was independently introduced by Dukowitz and Ramshaw4 for 
hyperbolic flows and Hughes and Brooks5 for elliptic and parabolic flows. 

The proper method of determining the optimal magnitudes of the components of the diffusivity 
tensor for a given problem is still an unresolved issue. Hughes and Brooks' estimate the optimal 
strength in an ad hoc manner by essentially averaging the optimal one-dimensional diffusivity for 
each co-ordinate direction. The approach taken by Dukowitz and Ramshaw4 is theoretically 
more appealing in that the diffusivity tensor is obtained directly from a Taylor series expansion. 
That is, temporal truncation errors are expressed, using the governing differential equation, as 
spatial errors and then explicitly accounted for in the temporal difference approximation by 
constructing an appropriate tensorial diffusivity. In effect, some of the truncation errors are 
themselves approximated in the difference scheme, effectively increasing the order of accuracy 
from first- to second-order. 

The objectives of the present study are to derive two differencing schemes for convection- 
dominated problems which exhibit the smoothing properties of artificial diffusion and yet 
maintain high-order accuracy, and to determine their behaviour for some standard test cases. The 
schemes developed herein conform to a compact nine-point (3 x 3) stencil (in 2D), allowing them 
to be applied immediately adjacent to a boundary. The formulation is analogous to the approach 
of Dukowitz and Ramshaw4 in that it employs the original differential equation to represent 
truncation error terms and therefore compensates for them. By using the original model equation 
to represent truncation terms, higher-order derivatives can be replaced with lower-order deriv- 
atives that can be approximated on a compact nine-point stencil. Since truncation terms are 
represented in the numerical differencing scheme, the order of accuracy of the scheme is increased. 
Note that the technique is applied to all of the terms appearing in the governing differential 
equation, providing higher-order accuracy for the entire discrete equation (not just for the 
convection terms). From another perspective, the appropriate form of the tensorial diffusivity and 
the optimal magnitude of its components are constructed naturally by the new procedure. 

A few researchers have applied the same principle used herein for particular applications while 
others have arrived at equations identical to ours, albeit via different routes. Abarbanel and 
Kumar6 employ the original differential equation to obtain a nine-point (in 2D) spatially O(h4), 
temporally O(hz)  scheme for the Euler equations; they also extend it to three dimensions. In an 
earlier study, Jones et al.' suggest application of this same principle in deriving an O(h4) scheme 
for Poisson's equation used in connection with the method of lines. 

In deriving their scheme for a convection-diffusion system having variable coefficients, Gupta 
et aL8 apply series expansions to the differential equation. After considerable manipulation they 
obtain a difference equation identical to one of the schemes derived in the present study. Dennis 
and Wingg arrive at a scheme similar to our scheme for the two-dimensional, constant coefficient 
(linear) case by employing the structure of the exact solution and using a finite difference 
adaptation of the Taylor-Maclaurin method for solving differential equations. In a later paper, 
Dennis and Hudson" derive the same scheme as in Reference 8 using another approach. They 
extend and modify the basic method of a class of higher-order compact schemes. This class of 
schemes employs derivatives of the original dependent variable as dependent variables, requiring 
boundary conditions for the derivatives. To eliminate this requirement, Dennis and Hudson" 
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employ a transformation that involves expanding the exponential of a definite integral of the 
convective coefficient. The approach followed in the present work is more direct than those cited 
above, involving straightforward differentiation and simple algebra. 

The presentation of this paper is as follows. The procedure is first developed for a non- 
homogeneous, one-dimensional, constant coefficient problem. A new exact difference formula is 
obtained which includes an optimal diffusivity and modified source term. The procedure is then 
rigorously extended to the constant coefficient case in two dimensions. The resulting fourth-order 
scheme is compared in numerical studies with various existing upwind and higher-order 
schemes.', l 1  Finally, the treatment of variable coefficients is discussed and an example 
Navier-Stokes calculation is presented. 

FORMULATION OF THE PRESENT APPROACH 

Motivation 

To motivate the main development presented in this study, we consider the steady 
convection4iffusion model problem 

- au, + cu, = 0, O G X  < 1, 

u(0) = 0, u( l )=  1, 

where a and c are positive constants. Here a is the conductivity, c is the convective velocity and 
the solution u can represent the concentration of a chemical species, heat, vorticity, etc. The exact 
solution to (l), (2) is 

1 - exp (cx/a) 

1 - exp (c/a) ' 
u(x )=  (3) 

When cb 1, the solution u ( x )  contains a boundary layer near x =  1. 
It is well known that the centred difference solution to this problem is oscillatory if the cell 

Reynolds number Reh (=&/a)  exceeds a value of two. This phenomenon is illustrated in Figure 1. 
Here we offer a simple explanation for the cause of these unwanted oscillations for the one- 
dimensional case. 

x i ,  and x i +  be three consecutive grid points. Denote the numerical solution at x i  by 
uhi = Uh(xi). The numerical solution for the centred difference approximation at the interior grid 
point x i  satisfies 

Let x i -  

(4) 

In order to illustrate how a centred difference discretization can lead to oscillations, we define 

a C 
-- (uhi + 1 - 2uhi + uhi - 1 ) + - (uhi + 1 - uhi- 1) = 0- h2 2h 

which represent forward and backward slopes at point x i .  Introducing the above slopes into (4) 
and rearranging yields 

s: (;-;) =s; (;+;). 
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Figure 1. Centred difference scheme (CDS) and exact 
solutions to a simple 1D convection4iffusion problem 
(equations (1) and (2)) showing spatially oscillatory 

behaviour for cell Reynolds number greater than two 

Figure 2. Optimal (exact) and standard upwind (UDS) 
solutions to the same problem as for Figure 1 

Observe that if the cell Reynolds number Reh exceeds a value of two, ST and S ;  must have 
opposite signs at each x i .  Hence for non-zero u h ,  the solution will become oscillatory. Further- 
more, for Re, = 2, s; and uhi are zero at each interior point, clearly an undesirable result for non- 
trivial u,,. Only when Re,, is less than two, allowing S: and S ;  to have the same sign, is the 
numerical solution well behaved, increasing monotonically from x = 0 to x = 1. 

A common approach for suppressing oscillations is to introduce additional diffusion a* into 
(4), effectively reducing Re,. In such a case, ( 5 )  would become 

s + ( y - ; ) = s - ( T + ; ) .  a+a* 

Thus, if a sufficient quantity of artificial diffusion a* is added to a, the effective cell Reynolds 
number 

ch Re,* =- 
a+a* (7) 

can be made to have a value less than two. Then the centred difference solution to (I), (2) will be 
non-oscillatory, though not necessarily accurate. For example, standard upwinding (backward 
differencing) of the convective term in (1) is equivalent in this case to introducing a* = ch/2, which 
is known to produce inaccurate results. On the other hand, it can be shown that if the optimal 
amount of artificial diffusion, a* = (ch/2) coth(ch/2a), is added, the centred difference representa- 
tion to (1) will give exact results at the nodes x i .  The optimal value is determined by introducing 
the analytical solution (3) directly into the discrete equation (4). Optimal and standard upwind 
solutions are shown in Figure 2. In the next subsection we present a new approach to developing 
the optimal upwind difference scheme. This approach does not require the exact solution a priori, 
nor is it restricted to homogeneous problems. Moreover, the methodology extends to problems 
involving two and three dimensions and variable coefficients. 
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One-dimensional case 

This subsection describes the underlying theory and important features of the proposed 
method. We begin by developing the approximation for the steady one-dimensional non- 
homogeneous model problem 

-au,,+cu,=f, O<x< 1, (8) 

where a and c are constants, a>O, and f is a sufficiently smooth function of x. 
The domain [0, 13 is uniformly subdivided into N intervals with xi  = ih, h = x i +  - x i ,  ui = u(xi), 

uhi=uh(xi)  and i~ (0, 1, 2, . . . , N j .  For a sufficiently smooth solution u, derivatives in (8) at 
interior grid points x i ,  can be defined using Taylor's theorem as 

h2 h4 
3! 5!  

D X i U = U x i  = D h x i U  - - D : i ~  -- D:iu + O(h6),  

2h2 2h4 
Diiu = uXxi = D ; x i ~  -__ D:u -_ D , 6 i ~  + O(h6), 4! 6! 

where ofxi and D l i  are the nth-order centred difference operator and the exact derivative operator 
respectively at x i .  

The key idea in the present development is the following: re-express the high-order derivatives 
that appear in the Taylor series expansions, equations (10) and (1 1) in this case, using information 
given by the original differential equation (8). By so doing, the accuracy of discrete approximation 
can be increased to arbitrary order (even to exact), since truncation errors pertaining to the 
discrete operator may be represented in the final discrete equation. For instance, in the case of the 
centred difference operator for the first derivative, equation (lo), the O(h2)  and higher truncation 
terms can be represented using the original differential equation such that the order of accuracy is 
increased depending on how many terms are represented. To illustrate this idea, we differentiate 
(8) to obtain 

and again to obtain 

c 1  2 

DX4u = D, ( 5  u,, -; f,) = ( 5 )  u,, - a' f, - a f,,, 
where (12) has been used to replace the third-order derivative in (13). The nth derivative for this 
case can be written in the general form 

We now have an expression for the nth-order derivative of u, derived from the differential 
equation (8), which can be used to represent the derivatives that appear in the Taylor series 
expansions (10) and (11). Introducing (14) into (10) and (11) and rearranging, we obtain the 



(c/a)(Dixiu+2fi)S2 
DxiU = Dhx.U - -c, 

1 +2(c/a)2S1 

Dixiu+2& 
D : i ~  = 

1 + 2(c/a)2 s, ’ 
where 
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(15) 

(16) 

Substituting ( 5) and (16) into (8), using (21) and (22) and simplifying, we c,tain 

-- coth - Dixiu+cDhXiu=f;++h coth - F;+c&. 
ch 2 (it) (it) = 

Equation (23) is an exact discrete representation of the model transport problem. Observe that 
when j ( x )  =0, (23) reduces to the well-known ‘exact’ (optimal upwind) centred difference 
representation of the homogeneous transport problem discussed earlier (equations (1) and (2)). 
Here, however, the analytic solution is not required a priori as it was previously.” 

Remarks. This method may also be applied to more general two-point boundary value 
problems having sufficiently smooth solutions. If a boundary flux is specified as data, say 
- au,( 1) = r, a higher-order compact difference formula for r can be derived using the procedure 
outlined above. This formula can be used to discretize the boundary condition in constructing the 
full set of difference equations for the Neumann problem. This idea is discussed in the context of 
finite difference and finite element methods by MacKinnon and Carey.13* l4 

In practice it may be more convenient or even necessary to use nodal values for frather than 
analytic functions. If the evaluations of f i  and p; are restricted to node points xi- 1, x i  and x i +  1, 

then (23) will be exact for constant or linear5 Otherwise, (23) is formally O(h4)-accurate whenfis 
only given discretely. 
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Two-dimensional case 

In this subsection we extend the one-dimensional formulation to two dimensions. Consider the 
boundary value problem 

- (au,, + buy, ) + cu, + du, =fk Y) ,  (24) 
where a, b, c and d are constants, a, b > 0, and f is sufficiently smooth. Here attention is restricted 
to regions which may be partitioned into square subregions by a uniform grid. A representative 
nine-point mesh stencil centred at interior node (xi, y j )  is shown in Figure 3. 

Again, the technique of using the governing equations to represent higher-order derivatives in 
Taylor series expansions will be used. That is, differentiating (24) once and solving for the third- 
derivative operator, we get 

(25) 
b C d 1 
U a a a 

D:u= - - D ~ D , U + - D ~ U + - D , D ~ U - - D , &  

Differentiating (24) twice and substituting (25) for the third-order derivative gives 

cd cb d b 1 C 
DXDyu--  0,' D,u+- D,D;u-- D ~ D ~ u - - -  D; f-i a D x f :  (26) a' a a a 

Continuing this process leads to a relationship for the nth derivative of u based on the original 
differential equation: 

Since we are now working in two dimensions, we indicate that the differential operators 
appearing in (27) apply to point (xi, y j ) .  These operators could be represented using the notation 
( D x D y ) i j .  For brevity we use DIDyi j  (= D, Dxi j ) .  

Now recall from (1 1) that the Taylor series expansion for uxxij is 

2h2 2h4 6 D $ ~ u  = uXxij= Dixij  u -_ D"-. u -_ u + O( h ). 4! *" 6! 

Figure 3. Schematic diagram and nomenclature for the square nine-point differencing stencil used for the 2D schemes 
derived in the present study 
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Replacing derivatives D$ju, Dziju, etc. using (27)  and rearranging, we can rewrite ( 1 1 )  as 

hZ c h4 c d h2 c h4 c 
4! a 6! a a 4!  a 6! a 

D2. .u=D2 . .u-2 [ - ( - r +- ( - + . . . ] D : i j ~ - 2 - [ - - + - ( - ) 1 +  . . . ] D x D y i j u  
X I J  X h I J  

[ h2 h4 (' y . . . ] DYDziju + Z - [ - - + - ( - y +  b h2 c h4 c . . . ] D ; D x i j u - 2 -  -+- - + 
a 4! a 6! a a 4! 6! a 

+2-[-+-(-)2+ b h2 h4 c 
a 4!  6! a . . . ] D ; D $ j u + R + 2 c ,  

where 

and fij is given by (20). Equation (28) is an expression that relates the exact derivative to the 
centred difference operator for the second derivative, with truncation error being represented 
using the governing differential equation. For convenience we rewrite (28) in the more compact 
form 

+2F=l",+R=",, (30) 
where S ,  is given by (17) and (21). Solving for D:ij and simplifying, we have 

bc D 2 . . ~ =  
1 + 2 (c/a)' S ,  

+2ej+R=; . 1 
A similar procedure is applied to derivative operators Dxiju,  D;iju, and Dyiju. The resulting 
expressions are introduced into the original differential equation (24) to obtain 

ch dh 
2 2 

B = - P ,  A = - y ,  (33) 

c = c ,  9 = d ,  

E=(:)':(yQ-sinh-+- ch a c h )  a +- h d  - '(b)2(PW-sinhdh+dh), b b  
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ch ch) (:y$-,W+sinh--- dh 1 - 
G= -(fyi(yQ-sinh-+- a a  - - b 3! b I 

H=-(;) b 2 a  i(pW-sinhb+b dh “) - 
ch 
a 3! a b 3! b (*y+$]-(a> b 3 a  h[gW-sinh--- dh 1 (dh”>’?] - 7 (39) [ yQ - sinh--- 

K = - (:y 
Q =Gosh ch-1 (?y - 1, W = c o s h d h l (  ”>’- 1, 

a 2 a  b 2 b  

(37) 

Expressions for the terms Frj, Frj, &,, Rrj and Cj are defined in Appendix I. If we now return to 
equation (32) and introduce O(h2) centred difference approximations for derivatives DxDyiju, 
DZDyiju, D,2DXijtl and D:D,Zu (see Appendix I) and neglect R,,, we obtain an O(h4) nine-point 
centred difference scheme 

The discretization scheme that leads to (43) will herein be referred to as the ONCDS (optimal 
nine-point centred difference scheme) since it reduces to the optimal (nodally exact) scheme (23) 
for one-dimensional problems (or when Rij = 0). 

Remarks. This scheme uses a nine-point stencil since a 3 x 3 matrix of nodes is required to 
represent all the discrete operators present in (43). The fact that an O(h4) scheme can be derived 
for such a compact (3 x 3) stencil is of significance since it can be applied as close to a boundary as 
a standard centred difference scheme and still be O(h4)-accurate. Some savings in computational 
time may be made by using polynomials to approximate the hyperbolic functions present in 
equations (33)-(42) above. 

The optimal tensorial diffusivity follows directly from (43). Setting coefficients G = H = K = 0, 
(43) can be written as 

-V;f,*(T * Vhij#h)+VT * Vhi jUh= Fij, 

where 

%jij= CDxhij, Dyh i j l ,  VT= [C, 91 
and the tensorial diffusivity T is given by 

A E/2 
T’[E/2 B 1’ 

T is a symmetric tensor which explicitly compensates for truncation errors involving the 
derivative terms uxx, uyy and uxy. Note that the off-diagonal elements E/2 account for the fact that 
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numerical diffusion in any given direction depends not only on the solution gradient in that 
direction but also on the solution gradients in the perpendicular (crosswind) direction. 

Remark. Upon setting G = H = K =O in (43), the difference formulae truncation errors are 
increased from O(h4) to O(hz). It follows that a nodal error estimate of O(h2) for the approxima- 
tion uh(xi ,  y j )  may be obtained directly from the method of proof developed by Bramble and 
Hubbard.’ 

Extension to variable coeficients 

In theory, the foregoing analysis can be extended to the case of variable smooth coefficients. 
Unfortunately, the algebra involved rapidly becomes unwieldy. To simplify the analysis, we limit 
the representation of high-order terms in the Taylor series expansions of the differential 
operators, equations (10) and (l l) ,  to the leading O(h2) truncation errors. Such an approach will 
still yield an O(h4)-accurate scheme. Consider the equation 

- (au, + buy,) + cu, + du, = f ( x ,  Y), (44) 
where a and b are constants and c, d andfvary spatially. Note that this equation is consistent with 
the two-dimensional Navier-Stokes equations for constant viscosity. Recall that the expansion 
(10) for u, at ( x i ,  y j )  is 

(45) 
h2 
3! X’’ 

DxijU = U x i j =  DhxijU -- D 3 .  .U + 0(h4). 

We now wish to represent the O(h2) term in (45) involving D:iju in order to obtain O(h4) 
accuracy. Again we use using the differential equation (44). Differentiating (44) once and solving 
for DIiju, we obtain 

b 1 C 1 d 1 
D: u = -- D,ZD,u +- D,cD,u +- D ;  u +- D,dD,u +- D,DXu - - D ,  f: 

a a a a a a 

In order to represent D,”ij in (45) using (46), all differential operators in (46) must be discretized. If 
we use centred difference operators, which are O(h2)-accurate, on the RHS of (46), we will 
maintain O(h4) accuracy overall, since the DI,u term in (45) is multiplied by h2. (It should be 
noted here that operators other than centred difference could be used for the derivatives in (46), 
resulting in various schemes with various orders of accuracy.) We obtain 

h2 
a3! 

DxijU= DhxijU-- (cD~,; i iU+D~,i jCD~,i jU+dD~,D~,i ju 

Expressions for D;iju (which requires representation of D ~ u ) ,  Dyi ju and D:iju are derived in 
analogous fashion and substituted along with (47) into (44). The result is a nine-point O(h4) 
centred difference representation having the same form as equation (43) but with coefficients A, B, 
etc. given by 

A = - a + -  hZ D c - -  , 
6 ( hx i:) 
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c 
DtxC + DiyC - - D h x C  

Dixd  + D i y d  - - Dhx 

12 U 

C 

12 U 

H = !f (@ + d ) ,  
12 b 

h2 
K = - - ( a + b ) ,  

12 

We will call this scheme the NCDS (nine-point centred difference scheme) since we have limited 
the representation of truncation errors in equations (10) and (11)  to the leading O ( h z )  terms, 
which can be represented on a 3 x 3 stencil by using the differential equation and centred 
difference approximations. 

Remarks. A tensorial diffusivity analogous to the one given in the preceding subsection may be 
derived from (48)-(52). However, note that the coefficients C and 9 of the derivatives u, and uy 
must also be modified. 

In the present study, derivatives of c and d are approximated with centred difference approx- 
imations. Upstream-weighted approximations may be used instead and may prove to be more 
effective. This issue will be examined in a future study. 

NUMERICAL RESULTS 

In this section we examine two different test problems. Comparisons are made between analytical 
and numerically 'exact' solutions and results for the two schemes proposed in this paper, as well 
as some previously published schemes. The first problem, which has been studied previously by 
Gupta et al.* and Stubly et al." is a two-dimensional convection4iffusion system with constant 
convective coefficients. The problem statement is as follows: 

- (au, + buyy) + a cos (O)u, + a sin (0)uy = 0 on (0, 1) x (0, 1) (57) 

40, y)=4y(l -Y), u(1, y)=O, OGyGl. (58) 

u(x ,  O)=u(x, 1)=0, OGXGl, 

The solution domain for this problem is shown in Figure 4. Equations (57) and (58) describe a 
steady system which for large a and 8 = 0 develops boundary layers along x = 1 and y = 1. The 
analytical solution to this problem is given in Appendix 11. 

The differencing schemes that are included in the comparison are the two proposed higher- 
order schemes, ONCDS and NCDS, standard first-order upwind differencing (UDS) of the 
convective terms, centred differencing (CDS), Leonard's' upwind differencing scheme (LDS) and 



750 R. J. MACKINNON AND R. W. JOHNSON 

I 

u l o . y l =  4y(I-y1 

( 

U(X.11 - 0 

1 

U(X.01 - 0 I 

Figure 4. Solution domain showing boundary conditions for the 2D convection4iffusion model problem with constant 
coefficients (equations (69) and (70)) 

Table I. Maximum absolute errors at the grid points of the 8 x 8 grid 

e h-' UDS CDS" LDS QIS'O NCDS ONCDS 

0 8 00804 0.64 0.2138 0.0046 0.2579 0005 1 
16 0.0245 0.16 0.0141 0-15 x 10-3 0.0093 0.2 x 10-4 
32 0.0058 017 x 10-3 0.4 x 10-4 0.3 x 10-4 0 4  x 1 0 - ~  01 x 10-8 

16 0,1792 012 0.0094 0.0038 0.0082 0.8 x 10-3 
32 0.0902 0.0042 0.0015 0.57 10-3 0.1 x 10-3 0.5 x 10-4 

16 0,1565 0.063 0.0024 0.0024 0.0053 0.9 x 10-3 
32 0,0831 0.0047 0.3 10-3 0.53 x 10-3 0.1 x 1 0 - ~  0.4 x 1 0 - ~  

1118 8 0.3264 0.91 0.2554 0066 0.2401 0.0335 

4 4  8 0,2721 0.55 0.1 708 0.050 01931 00501 

Order O(h)  0(h2) 0 ( h 2 )  W4) 

the quadratic influence scheme (QIS)." Results are computed for a =  b= 1, c1= 80, 8=0, n/8 and 
n/4 and a sequence of uniform meshes h =  1/4, 1/8, 1/16 and 1/32. 

Maximum errors occurring at the grid points of the coarsest grid (8 x 8, h= 1/8), are presented 
in Table I for the various angles 8 and grid spacings h. In determining the order of convergence to 
the exact solution of a particular scheme, it is appropriate to consider the reduction in error at a 
given point as the grid spacing h is changed. In Table I the reported errors are for a particular 
point for each scheme and hence show the convergence of that scheme at that point as h changes. 
As can be seen, the ONCDS scheme is consistently more accurate than the other schemes. Note 
that the ONCDS and QIS schemes have similar accuracy for h = 1/8, but since ONCDS exhibits a 
superior rate of convergence, O(h4), it is more accurate for the finer grids. QIS and NCDS display 
similar accuracy on the finer grids tested; however, NCDS will also become more accurate for 
finer grids because of its O(h4) rate of convergence. The difference in solution accuracy between 
LDS and NCDS is marginal for all grids. Again, however, NCDS will exhibit superior accuracy in 
finer grids since the LDS scheme converges to the exact solution at the suboptimal rate of O(hz).  
The O(h2)  CDS scheme, while suitable for the finest grids, is unacceptably inaccurate for the 
coarser grids. The UDS scheme is also inaccurate, but since it is an O(h)  scheme, little 
improvement is gained with mesh refinement. 
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Table I1 provides information similar to that of Table I, except that the maximum errors, 
wherever they happen to occur on the grid for a given h, are shown. (Convergence rates should 
not be determined with this table since the error may occur at different points for different values 
of h.) This table is included in order to demonstrate that the worst errors do not tell a different 
story than that for Table I. It is still clear that ONCDS is consistently more accurate than any 
other scheme and that NCDS and LDS display similar accuracy. UDS is as inaccurate as in 
Table I. Figures 5 and 6 illustrate solution profiles along constant lines y=0.875 and x=0.25 
respectively for the case 8=x/4 and h= 1/8 for the test problem of equations (57) and (58). It is 
clear from these figures that ONCDS produces the best results. 

For the second test problem the NCDS scheme is extended to the numerical approximation of 
laminar, viscous, incompressible fluid flow. Consider the two-dimensional Navier-Stokes and 

Table 11. Maximum absolute grid point errors 

0 h - '  UDS LDS NCDS ONCDS 

0 4 
8 

16 

8 
16 

1114 4 
8 

16 

$3 4 

0.0408 
0.0804 
0.1429 
0.2793 
0,3264 
0.2743 
0,2422 
0,2721 
0.2677 

0.3481 
0.2138 
0.1192 
0.3332 
0.2553 
0.1005 
0.3652 
0.1708 
0.0606 

0.3405 
0.2579 
0.089 1 

0.4507 
0.2496 
0.0737 
0.3206 
0.1931 
0.0437 

0-0213 
0.005 1 
0.001 1 
0.1 102 
0.0335 
0.0075 
0.1229 
0.0501 
0.0 144 

'1 

2 
C 

x 
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0.0 0.2 0.4 0.6 0.8 10 1.2 

X 

Figure 5. Comparison of results for the two new differencing schemes (ONCDS and NCDS) with results for centred 
differencing (CDS), upwinding (UDS) and the exact solution for the model problem of Figure 4 for y=0.875 
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= exact 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 

Y 

Figure 6. Comparison of results for ONCDS and NCDS with results for CDS, UDS and the exact solution for the model 
problem of Figure 4 for x = 0.25 

continuity equations 

auj au j -  1 ap a z u j  

at ax,  a x j  axiaxi’ -+ Ulr -_ -- -+ v ~ 

= 0, aU, 
ax, 

(59) 

where xk = [x,, x z ]  = [x, y], p is the density, uj=  [u, 01, is the velocity vector, p is the pressure and 
v is the kinematic viscosity. If the unsteady and pressure gradient terms in (59) are considered to 
be source terms, f ( x ,  y), then equations (59) are analogous to the convection4iffusion equation 
(44). Hence the NCDS discrete equation for (59) has the same form as (43) with coefficients given 
by (48)-(56), except that the coefficients a and b are constant and equal to v. While the NCDS 
scheme has not been applied to the continuity equation for this study, it can and will be applied in 
future work; standard centred differencing is used for (60). 

The problem chosen for study for the application of NCDS to the Navier-Stokes equations is 
the driven cavity. The domain is a square cavity (1 x 1) where the top side is moving in a positive 
direction at constant velocity and the other sides are stationary. The Reynolds number for the 
flow, based on the velocity of the top side and the width of the cavity, is 400. A uniform grid 
(30 x 30) is used. 

The NCDS scheme is programmed into an existing semi-implicit code which uses staggered 
placement of primitive variables and successive overrelaxation while iterating at each time step to 
achieve a divergence-free velocity field. Since the test problem is steady, the solution is continued 
until steady state is achieved. 

Since the first- and second-derivative operators must be applied to the pressure gradients to 
provide the necessary terms for the NCDS scheme (see equations (19) and (20) and equations (62) 
and (63) in Appendix I, as they apply to (43)), it will be required to represent pure and mixed 
second- and third-order derivatives of pressure. Owing to the staggering of variables, ap/ax and 
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Figure 7. Comparison of results for new scheme (NCDS) with UDS, CDS and the exact numerical ~ o l u t i o n ' ~  for a square 
driven cavity, Re = 400, for the u-velocity along the constant x-value centreline of the cavity 
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Figure 8. Comparison of results for NCDS with UDS, CDS and the exact numerical ~ o l u t i o n ' ~  for a square driven cavity, 
Re=400, for the u-velocity along the constant y-value centreline of the cavity 

d p / d y  are easily computed at velocity nodes where they are needed for NCDS. Then, the centred 
difference operators D x h i j ,  D$i j ,  D y h i j  and D;,,ij are applied to the pressure gradients computed for 
the velocity nodes. Discrete time derivatives can also be computed for each velocity node and 
operated on exactly like the pressure gradients to obtain similarly required mixed derivatives. 

Results for the NCDS scheme for the driven cavity test problem are illustrated in Figures 7 
and 8 and compared with the UDS and CDS schemes and the 'exact' numerical solution reported 
by Ghia et Figure 7 shows results for the u-velocity along the vertical (constant y-value) 
cavity centreline while Figure 8 shows the u-velocity along the horizontal centreline. The accuracy 
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of the NCDS scheme is clearly superior to that of the other schemes, particularly UDS. The 
increased accuracy of the NCDS scheme raises the question of the cost effectiveness of employing 
the O(h4) scheme with the obvious increased costs of computing the coefficients for the discrete 
equation. This question is addressed in Appendix 111. 

Attempts to compute results for higher-Reynolds-number flow (Re = 1OOO) resulted in oscil- 
lations for the NCDS scheme. Further development is required to find a more robust but still 
O(h4) version of NCDS. Such aspects as determining the optimal type of discrete operators to use 
for the derivatives that appear in the coefficients (A, B, C and 9) in the discrete equation (43) 
should be pursued. Nevertheless, it has been shown that the ONCDS and NCDS schemes can 
provide higher-order accuracy than most traditional schemes on a compact stencil. 

CONCLUDING REMARKS 

In this study we have presented a differential-equation- and Taylor-series-based procedure for 
obtaining compact high-order difference approximations to elliptic partial differential equations 
and to transport equations in particular. Using this procedure, we have developed the exact 
one-dimensional difference scheme, an O(  h4) two-dimensional difference scheme (ONCDS) 
for constant coefficient convection-diffusion equations and an 0 ( h 4 )  two-dimensional scheme 
(NCDS) for convection-diffusion problems with variable convective coefficients. The two- 
dimensional schemes are derived for a compact 3 x 3 stencil. While NCDS is equivalent to the 
schemes proposed in References 8 and 10, the procedure used for its derivation in the present 
study is simpler and more direct, involving only straightforward differentiation and algebra. The 
effectiveness of the schemes derived herein has been demonstrated, in terms of accuracy and rates 
of convergence, for two numerical test problems, including an application of the Navier-Stokes 
equations. 

The approach of representing truncation errors by the governing differential equation has led 
to a more lucid interpretation of tensorial diffusivity (streamline upwinding) and their relation- 
ships to higher-order difference formulae. These relationships will be examined further in future 
studies. In particular, we plan (i) to investigate various upstream difference approximations to 
the coefficient and forcing function derivatives present in the higher-order formulae, (ii) to derive 
an improved high-order scheme and tensorial diffusivity for problems with variable coefficients 
by considering additional truncation terms and (iii) to extend the methodology to transient 
problems. 

Finally, it is noted that the principle employed in the present study to form high-order 
difference schemes generalizes to other differential equations provided that appropriate smooth- 
ness conditions are satisfied. 
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APPENDIX I: FORMULAE AND CENTRED DIFFERENCE APPROXIMATIONS USED 
IN THE HIGH-ORDER SCHEMES 

This appendix defines the remainder and forcing function expressions for equations (41) and (42) 
and the O(h2)  centred difference approximations used to represent the cross-derivatives in the 
O(h4) formula (43) (see Figure 3 for grid nomenclature). 

APPENDIX 11: ANALYTICAL SOLUTION TO THE 
TWO-DIMENSIONAL MODEL PROBLEM 

The two-dimensional model problem, restated for convenience, is 

-(auxx+buyy)+orcos(B)ux+orsin(B)uy=O on (0, 1 )  x(0, l), (70) 

40, Y)=4Y(l -Y),  4 1 ,  Y ) = o ,  O<y<l. (7 1) 

u(x ,  0) = u(x,  1 )  = 0, O G x G l ,  

The exact solution, also given by Gupta et u L , ~  is 

1 (B,sinh[o,(l-x)]sin(nxy)}, (72) 
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where 

R. J. MACKINNON A N D  R. W. JOHNSON 

a,” = n2 n2 + a2/4, (73) 

B“=- sin:rrn j: y(1- y)exp( 7 sinO)sin(nny)dy, (74) 

APPENDIX III. COST EFFECTIVENESS OF THE o(h4) SCHEME 

It is not possible to give a universally valid assessment of the cost effectiveness of using a higher- 
order scheme versus a simpler low-order scheme. The difference in employing two different 
schemes is dependent on the problem being solved, the mesh employed, the method used in the 
solution algorithm and the programming efficiency of the programer who writes the code. Hence 
a simple comparison between two schemes has limited validity. Keeping this in mind, we compare 
the direct costs for constructing the discrete equation and solving it for the O(h4) NCDS scheme 
versus an O(h)  hybrid upwind/centred difference scheme for the driven cavity problem. We 
assume that a standard banded Gauss direct solver is used. Table 111 compares the cost ratio of 
equation construction and solution of the higher-order scheme with those for the low-order 
scheme for different mesh widths (neglecting adds). (The width is the side of the mesh which has 
fewer cells.) 

As we can see, the cost of using the O(h4) scheme is about two times greater than for the O(h) 
scheme for a mesh of 10 x m, rn> 10. This result indicates, for example, that using the O(h4) 
scheme with a 10 x 10 grid costs the same computationally as the O(h)  scheme for a 10 x 20 grid. 
However, the rate at which the error decreases for the O(h4) scheme is eight times faster than for 
the O(h)  scheme since the cell size is halved (assuming we are in the asymptotic error region). That 
is, the coefficient of the leading truncation term for the O(h)  scheme drops by 1/2 as h is halved, 
while that for the O(h4) scheme drops by (1/2)4= 1/16. Clearly, as the mesh is refined, the O(h4) 
scheme becomes more cost-effective than the O(h) scheme. It is up to the individual user, however, 
to determine if his acceptable level of error occurs above or below the cost-effective point. 

Table 111. Ratio of operations required for construction and solution of NCDS 
versus a hybrid upwind/centred difference scheme for a driven cavity for various 

mesh widths 

Mesh width Construction Solver Total 
(number of cells) (construction x solver) 

10 1.8 1.21 2.18 
20 1.8 1.10 1.98 
40 1.8 1.05 1.89 

100 1.8 1.02 1-84 
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